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VIII.2. A Semiconductor Device Primer
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1. Carrier Concentrations

The probability that an electron state in the conduction band is filled is
given by the Fermi-Dirac distribution
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The density of atoms in a Si or Ge crystal is about 4.1022 atoms/cm3.

Since the minimum carrier density of interest in practical devices is of
order 1010 to 1011 cm-3, very small ocupancy probabilities are quite
important.

In silicon the band gap is 1.12 eV. If the Fermi level is at midgap, the
band-edges will be 0.56 eV above and below EF.

As is apparent from the plot, relatively large deviations from the Fermi
level, i.e. extremely small occupancies, will still yield significant carrier
densities
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The number of occupied electron states Ne is determined by
summing over all available states multiplied by the occupation
probability for each individual state

Since the density of states near the band edge tends to be quite high,
this can be written as an integral

where g(E) is the density of states.

Solution of this integral requires knowledge of the density of states.

Fortuitously, to a good approximation the density of states near the
band edge has a parabolic distribution

As the energy increases beyond the band edge, the distribution will
deviate from the simple parabolic form, but since the probability
function decreases very rapidly, the integral will hardly be affected.

The second obstacle to a simple analytical solution of the integral is
the intractability of integrating over the Fermi distribution.
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Fortunately, if E-EF is at least several times kBT, the Fermi
distribution can be approximated by a Boltzmann distribution

At energies beyond 2.3 kBT of the Fermi level the difference between
the Boltzmann approximation and the Fermi Distribution is <10%,
for energies >4.5 kBT it is less than 1%.

Applying the approximation to the occupancy of hole states, the
probability of a hole state being occupied, i.e. a valence state being
empty is

Since the band gap is of order 1 eV and kBT at room temperature is
0.026 eV, the conditions for the Boltzmann approximation are fulfilled
for excitation across the band gap.
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With these simplifications the number of electrons in the conduction
band in thermal equilibrium is

or

where Nc is the effective density of states at the band edge.

Correspondingly, the hole concentration

In a pure semiconductor

where ni is the number of electrons or holes intrinsic to a pure
semiconductor, i.e. where only source of mobile carriers is thermal
excitation across the band gap without any additional impurity atoms
or crystal imperfections that would allow other excitation
mechanisms.

Silicon (Eg = 1.12 eV): ni= 1.45.1010 cm-3  at 300K
Germanium (Eg = 0.66 eV): ni= 2.4.1013 cm-3    at 300K

For comparison:

The purest semiconductor material that has been fabricated
is Ge with active impurity levels of about 3.1010 cm-3.
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Using the above results

which one can solve to obtain EF

If the band structure is symmetrical (Nc=Nv), the intrinsic Fermi level
lies in the middle of the band gap.

Even rather substantial deviations from a symmetrical band structure
will not affect this result significantly, as Nc /Nv enters logarithmically
and kBT is much smaller than the band gap.

A remarkable result is that the product of the electron and hole
concentrations

depends only on the band gap Eg and not on the Fermi level.

This result, the law of mass action, is very useful in semiconductor
device analysis. It requires only that the Boltzmann approximation
holds.

Qualitatively, it says that if one carrier type exceeds this equilibrium
concentration, recombination will decrease the concentrations of both
electrons and holes to maintain np= ni

2.
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2. Carrier Concentrations in Doped Crystals

The equality
    ne = nh

only holds for pure crystals, where all of the electrons in the
conduction band have been thermally excited from the valence band.

In practical semiconductors the presence of impurities tips the
balance towards either the electrons or holes.

Impurities are an unavoidable byproduct of the crystal growth
process, although special techniques can achieve astounding results.
For example, in the purest semiconductor crystals – “ultrapure” Ge –
the net impurity concentration is about 3.1010 cm-3.

In semiconductor device technology impurities are introduced
intentionally to control the conductivity of the semiconductor.

Let Nd
+ be the concentration of ionized donors and Na

- the
concentration of ionized acceptors.

Overall charge neutrality is preserved, as each ionized dopant
introduces a charged carrier and an oppositely charged atom, but the
net carrier concentration is now

or

Assume that the activation energy of the donors and acceptors is
sufficiently small so that they are fully ionized

Then
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which, using np= ni
2, becomes

If the acceptor concentration NA >> ND  and NA >> ni

i.e. the conductivity is dominated by holes.

Conversely, if the donor concentration ND >> NA  and ND >> ni the
conductivity is dominated by electrons.

If the conductivity is dominated by only one type of carrier, the Fermi
level is easy to determine. If, for example, n >> p

can be written

yielding

If ND >> NA , then Ec-EF must be small, i.e. the Fermi level lies close
to the conduction band edge.

In reality the impurity levels of common dopants are not close enough
to the band edge for the Boltzmann approximation to hold, so the
calculation must use the Fermi distribution and solve numerically for
EF. Nevertheless, the qualitative conclusions derived here still apply.
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It is often convenient to refer all of these quantities to the intrinsic
level Ei , as it accounts for both Ec and Ev. Then

and the Fermi level

Variation of Fermi level with doping and temperature, including
narrowing of the band gap with temperature:

(from Sze)
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3. p-n Junctions

A p-n junction is formed at the interface of a p- and an n-type region.

(from Kittel)

Since the electron concentration in the n-region is greater than in the
p-region, electrons will diffuse into the p-region.

Correspondingly, holes will diffuse into the n-region.

As electrons and holes diffuse across the junction, a space charge
due to the ionized donor and acceptor atoms builds up. The field due
to this space charge is directed to impede the flow of electrons and
holes.

The situation is dynamic:
The concentration gradient causes a continuous diffusion current
to flow.
The field due to the space charge drives a drift current in the
opposite direction.
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Equilibrium is attained when the two currents are equal, i.e. the sum
of the diffusion and drift currents is zero.

The net hole current density is

where Dp is the diffusion constant for holes and Ep is the electric field
in the p-region.

To solve this equation we make use of the following relationships:

The hole concentration is

so its derivative

Since the force on a charge qe due to an electric field E is equal to
the negative gradient of the potential energy,

As only the gradient is of interest and Ec , Ev and Ei differ only by a
constant offset, any of these three measures can be used. We’ll use
the intrinsic Fermi level Ei since it applies throughout the sample.

The remaining ingredient is the Einstein relationship, which relates
the mobility to the diffusion constant
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Using these relationships the net hole current becomes

Accordingly, the net electron current

Since, individually, the net hole and electron currents in equilibrium
must be zero, the derivative of the Fermi level

⇒ in thermal equilibrium the Fermi level must be constant
throughout the junction region.

For the Fermi level to be flat, the band structure must adapt, since on
the p-side the Fermi level is near the valence band, whereas on the
n-side it is near the conduction band.

If we assume that the dopants are exclusively donors on the n-side
and acceptors on the p-side, the difference in the respective Fermi
levels is

This corresponds to an electric potential

often referred to as the “built-in” voltage of the junction.
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As either NA or ND increases relative to ni, the respective Fermi level
moves closer to the band edge, increasing the built-in voltage.

With increasing doping levels the built-in voltage approaches the
equivalent potential of the band-gap Eg /qe.

(from Sze)
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The inherent potential distribution in the junction leads to a depletion
region, whose width can be increased by application of an external
potential, i.e. reverse biasing the junction.

(from Kittel)

This was discussed in a previous lecture.

Now the forward bias mode will be treated in more detail.

Complication:

Applying an external bias leads to a condition that deviates from
thermal equilibrium, i.e. the Fermi level is no longer constant
throughout the junction.
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4. The Forward-Biased p-n Junction

If a positive voltage is applied to the p-electrode relative to the
n-electrode, the total variation of the electric potential across the
junction will decrease.

(from Kittel)

Since this reduces the electric field across the junction, the drift
component of the junction current will decrease. Since the
concentration gradient is unchanged, the diffusion current will exceed
the drift current and a net current will flow.

This net current leads to an excess of electrons in the p-region and
an excess of holes in the n-region. This “injection” condition lead to
a local deviation from equilibrium, i.e. pn>ni

2. Equilibrium will be
restored by recombination.

Note that a depletion region exists even under forward bias,
although its width is decreased. The electric field due to the space
charge opposes the flow of charge, but the large concentration
gradient overrides the field.
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Consider holes flowing into the n-region. They will flow through the
depletion region with small losses due to recombination, as the
electron concentration is small compared with the bulk.

When holes reach the n-side boundary of the depletion region the
concentration of electrons available for recombination increases and
the concentration of holes will decrease with distance, depending on
the cross-section for recombination, expressed as a diffusion length.

Ultimately, all holes will have recombined with electrons. The required
electrons are furnished through the external contact from the power
supply.

On the p-side, electrons undergo a similar process. The holes
required to sustain recombination are formed at the external contact
to the p-region by electron flow toward the power supply, equal to the
electron flow toward the n-contact.

The steady-state distribution of charge is determined by solving the
diffusion equation.

Electrons flowing into the p region give rise to a local concentration np

in excess of the equilibrium concentration np0. This excess will decay
with a recombination time τn, corresponding to a diffusion length Ln.

The first boundary condition required for the solution of the diffusion
equation is that the excess concentration of electrons vanish at large
distances x,

The second boundary condition is that the carriers are injected at the
origin of the space charge region x= 0 with a concentration np(0).
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This yields the solution

From this we obtain the electron current entering the p-region

This says that the electron current is limited by the concentration
gradient determined by the carrier density at the depletion edge np(0)
and the equilibrium minority carrier density np0 .

Determining the equilibrium minority np0 is easy

The problem is that np(0) is established in a non-equilibrium state,
where the previously employed results do not apply.

To analyze the regions with non-equilibrium carrier concentrations
a simplifying assumption is made by postulating that the product
pn is constant. In this specific quasi-equilibrium state this constant
will be larger than ni

2, the pn-product in thermal equilibrium.

In analogy to thermal equilibrium, this quasi-equilibrium state is
expressed in terms of  a “quasi-Fermi level”, which is the quantity
used in place of EF that gives the carrier concentration under non-
equilibrium conditions.
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The postulate pn= const. is equivalent to stating that the non-
equilibrium carrier concentrations are given by a Boltzmann
distribution, so the concentration of electrons is

where EFn is the quasi-Fermi level for electrons, and

where EFp is the quasi-Fermi level for holes.

The product of the two carrier concentration in non-equilibrium is

If pn is constant throughout the space-charge region, then EFn-EFp

must also remain constant.

Using the quasi-Fermi level and the Einstein relationship, the electron
current entering the p-region becomes

These relationships describe the behavior of the quasi-Fermi level in
the depletion region. How does this connect to the neutral region?

In the neutral regions the majority carrier motion is dominated by drift
(in contrast to the injected minority carrier current that is determined
by difusion). Consider the n-type region. Here the bulk electron
current that provides the junction current

TkEE
i

BiFnenn /)( −=

TkEE
i

BFpienp /)( −=

TkEE
i

BFpFnenpn
/)(2 −=

dx

dE
nen

dx

d
Dq

dx

dn
DqJ Fn

n
TkEE

ine

x

p
nenp

BiFn µ−=−−=−= −

=

)( /)(

0

dx

dE
nJ i

nnn µ−=



Introduction to Radiation Detectors and Electronics Copyright  1998 by Helmuth Spieler
VIII.2.a. A Semiconductor Device Primer, Doping and Diodes

Since the two electron currents must be equal

it follows that

i.e. the quasi-Fermi level follows the energy band variation.

⇒ in a neutral region, the quasi-Fermi level for the majority
carriers is the same as the Fermi level in equilibrium.

At current densities small enough not to cause significant voltage
drops in the neutral regions, the band diagram is flat, and hence the
quasi-Fermi level is flat.

In the space charge region, pn is constant, so the quasi-Fermi levels
for holes and electrons must be parallel, i.e. both will remain constant
at their respective majority carrier equilibrium levels in the neutral
regions.

If an external bias V is applied, the equilibrium Fermi levels are offset
by V, so it follows that the quasi-Fermi levels are also offset by V.

Consequently, the pn-product in non-equilibrium
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If the majority carrier concentration is much greater than the
concentration due to minority injection (“low-level injection”), the hole
concentration at the edge of the p-region remains essentially at the
equilibrium value. Consequently, the enhanced pn-product increases
the electron concentration.

Correspondingly, the hole concentration in the n-region at the edge of
the depletion zone becomes
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Energy band diagrams showing the intrinsic Fermi level Ψ,

the quasi-Fermi levels for electrons Φn and holes Φp , and the
carrier distributions for forward (a) and reverse bias conditions (b).

                p                    n                                p                     n

                   forward bias                                      reverse bias
(from Sze)



Introduction to Radiation Detectors and Electronics Copyright  1998 by Helmuth Spieler
VIII.2.a. A Semiconductor Device Primer, Doping and Diodes

Carrier distributions and current densities for forward (a) and
reverse bias conditions (b)

                p                    n                                p                     n

                    forward bias                                    reverse bias

(from Sze)
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Since the equilibrium concentrations

the components of the diffusion current due to holes and electrons
are

The total current is the sum of the electron and hole components

where
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Forward and reverse characteristics of a pn-junction diode

(from Sze)
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Note that in the diode equation

a) The band gap does not appear explicitly
(only implicitly via ni )

b) The total current has two distinct components, due to electrons
and holes.

c) The electron and hole currents are not necessarily equal

d) Current flows for all values of V. However, when plotted on a
linear scale, the exponential appears to have a knee, often
referred to as the “turn-on” voltage

e) The magnitude of the turn-on voltage is determined by I0.
Diodes with different band-gaps will show the same behavior if
I0 is the same.
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Comparision between commercial Si and Ge junction diodes
(1N4148 and 1N34A)

On a linear scale the Ge diode “turns on” at 200 – 300 mV, whereas
the Si diode has a threshold of 500 – 600 mV

Si and Ge Diodes - Forward Bias
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However, on a logarithmic scale it becomes apparent that both
diodes pass current at all voltages >0.

The reverse current shows why the Ge diode shows greater
sensitivity at low voltages (smaller band-gap ⇒ increased ni).

Si vs. Ge Diode - Forward Bias
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The Si diode shows a “textbook” exponential forward characteristic at
currents >10 nA, whereas the Ge diode exhibits a more complex
structure.

A “state-of-the-art” reverse diode characteristic (Steve Holland)

The depletion width is 300 µm, attained at about 20 V.

The area of the diode is 9 mm2, so the reverse leakage current of
40 pA corresponds to 450 pA/cm2, which is about 10x the theoretical
value.
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The discrepancies between the measured results and the simple
theory require the analysis of additional processes in the depletion
zone.

One can recognize four regions in the forward current:

a) generation- recombination in the depletion region
b) diffusion current (as just calculated for the ideal diode)
c) high-injection region where the injected carrier concentration

affects the potentials in the neutral regions.
d) voltage drop due to bulk series resistance

The reverse current is increased due to generation currents in the
depletion zone.


